天然ガス自動車の
普及に向けて
2017～2018年度版

一般社団法人 日本ガス協会
目次

1. はじめに .. 2

2. 世界における天然ガス自動車の動向 ... 3

3. 天然ガス自動車の普及に向けて .. 9

4. 日本における天然ガス自動車を取り巻く環境と支援措置 24

5. 参考資料 ... 28
1. はじめに

我が国では1970年代の石油危機をきっかけに、家庭用・業務用・製造業部門においては過度の石油依存が是正され、エネルギー源の多様化が進みました。しかしながら、輸送用燃料は現在でも98%をガソリン・軽油などの石油系燃料に依存しています。2011年3月の東日本大震災においては、燃料供給網の寸断によりガソリンスタンドに燃料を求める長蛇の列ができました。生活のライフラインを担う運送業者においても軽油の調達が困難となり、被災地における物流機能の低下が見られました。災害時対応を含め、輸送分野のエネルギー源を多様化し極端な石油依存構造から脱却することは、わが国の大きな課題です。

輸送部門の石油依存度の低減を図るため、エネルギーセキュリティの観点から、国の基幹エネルギーである天然ガスの利用拡大が必要とされています。天然ガスは産出地域が世界各地に分布しており、大規模埋蔵地域が集中する石油よりも価格変動や輸出入のリスク分散が可能です。また、シェールガスなどの非在来型ガスの開発まで含めると、回収可能な埋蔵量は230年分相当と言われ、可採年数の拡大と市場価格の安定化も見込まれます。

また、低炭素社会の実現に向け、二酸化炭素（CO₂）の削減がますます重要視されています。温室効果ガスが引き起こしている地球温暖化の進行により、世界各地で多雨や水害、異常高温などの異常気象が発生しており、世界中で対策が求められています。天然ガス自動車はCO₂排出量をガソリン車やディーゼル車より低減でき、地球温暖化防止に役立ちます。また、窒素酸化物（NOx）や黒煙等の粒子状物質（PM）といった大気汚染物質の排出量が極めて少なく、大気環境改善にも貢献できます。

天然ガスの環境性や経済性、エネルギーセキュリティの優位性を背景に、我が国では天然ガス自動車は実用性の高い石油代替エネルギー車として、既にトラック、バス、廃棄物、軽貨物車、バン等の広い用途で普及しています。

一方、世界に目を向けると、天然ガス自動車は2,300万台近く普及しています。世界では年間150万台のペースで普及しており、その実用性や環境性能から、次世代自動車のなかで主流に位置づけられています。

2011年秋、日本ガス協会では「2030年に向けた天然ガスの普及拡大」を発表し、産業部門、業務用・家庭用部門での天然ガスシフト・高度利用の推進を皮切りに、運送部門を含む取り組みを強化し、ガソリン車を主なターゲットに50万台の天然ガス自動車を普及させる目標を掲げました。この目標においては、これまでの都市内輸送車両への普及に加え、長距離・都市間輸送への大型トラックの普及を目指しています。長距離・都市間輸送は大型車、都市内輸送に中・小型の天然ガストラックを導入することで、高いCO₂削減効果が図れます。

日本ガス協会は、天然ガスのメリットをより多くのお客様にご享受いただくために、使命感を持って、天然ガス自動車の普及拡大に取り組んで参ります。

自動車を取り巻く課題
- 運送部門の石油依存度
- CO₂などの温室効果ガスによる地球温暖化
- NOx・PM等による大気汚染

天然ガス自動車
- 石油代替エネルギーとしてエネルギー・セキュリティに貢献
- CO₂排出量削減
- 環境にやさしく、ポスト新長期規制値を大幅にクリア

天然ガス自動車の普及拡大に向けて
- 長距離・都市間をつなぐ
- 大型天然ガストラックを軸とし
- 運送部門への普及に向け
- 取り組みを推進
2. 世界における天然ガス自動車の動向

2.1 普及状況概要

自国で産出する天然ガスの有効利用（エネルギーの自給と経済性）として利用が始まった天然ガス自動車は、イラン、パキスタン、アルゼンチン、インド、ブラジルなどを中心に普及し、世界で現在約2,300万台が走行しています。なかでも中国では、近年LNG車を中心に急速にその数を増やしており、普及がより一層期待されています。IEA（国際エネルギー機関）では2035年の普及予測台数を3,500万台と見込んでいます。

表1 世界における天然ガス自動車及び充てん所数※1

<table>
<thead>
<tr>
<th>国名</th>
<th>天然ガス自動車台数(台)</th>
<th>充てん所数(基)</th>
<th>国名</th>
<th>天然ガス自動車台数(台)</th>
<th>充てん所数(基)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 中国</td>
<td>5,000,000</td>
<td>7,950</td>
<td>14 ベネズエラ</td>
<td>226,100</td>
<td>207</td>
</tr>
<tr>
<td>2 イラン</td>
<td>4,000,000</td>
<td>2,380</td>
<td>15 ペルー</td>
<td>224,035</td>
<td>277</td>
</tr>
<tr>
<td>3 パキスタン</td>
<td>3,000,000</td>
<td>3,416</td>
<td>16 パングラデシュ</td>
<td>220,000</td>
<td>585</td>
</tr>
<tr>
<td>4 アルゼンチン</td>
<td>2,295,000</td>
<td>2,014</td>
<td>17 エジプト</td>
<td>185,000</td>
<td>162</td>
</tr>
<tr>
<td>5 インド</td>
<td>1,800,000</td>
<td>1,233</td>
<td>18 アメリカ</td>
<td>160,000</td>
<td>1,850</td>
</tr>
<tr>
<td>6 ブラジル</td>
<td>1,781,102</td>
<td>1,805</td>
<td>19 ロシア</td>
<td>145,000</td>
<td>303</td>
</tr>
<tr>
<td>7 イタリア</td>
<td>883,190</td>
<td>959</td>
<td>20 ドイツ</td>
<td>98,172</td>
<td>885</td>
</tr>
<tr>
<td>8 コロンビア</td>
<td>543,000</td>
<td>790</td>
<td>21 ショージア</td>
<td>80,600</td>
<td>100</td>
</tr>
<tr>
<td>9 タイ</td>
<td>474,486</td>
<td>502</td>
<td>22 マレーシア</td>
<td>74,112</td>
<td>125</td>
</tr>
<tr>
<td>10 ウズベキスタン</td>
<td>450,000</td>
<td>213</td>
<td>23 ブルガリア</td>
<td>61,256</td>
<td>178</td>
</tr>
<tr>
<td>11 ウクライナ</td>
<td>390,000</td>
<td>324</td>
<td>24 スウェーデン</td>
<td>53,122</td>
<td>173</td>
</tr>
<tr>
<td>12 ボリビア</td>
<td>360,000</td>
<td>156</td>
<td>25 日本 **2</td>
<td>46,316</td>
<td>273</td>
</tr>
<tr>
<td>13 アルメニア</td>
<td>244,000</td>
<td>345</td>
<td>その他</td>
<td>252,928</td>
<td>1,878</td>
</tr>
<tr>
<td>合計</td>
<td>23,047,419</td>
<td>29,083</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※1 出典：「2016 NGV Global」
※2 日本ガス協会調べ 2017年3月末実績
2.2 ヨーロッパでの普及状況

ヨーロッパの天然ガス自動車の状況は、各国によって異なります。欧州合計では、約180万台の天然ガス自動車、ガススタンドが約4,600ヶ所あります。天然ガス自動車のうち85%が小型車両で、トップはイタリアで、90万台近く普及しています。特に、ウクライナとロシアとフランスでは、バスが多くなっています。ヨーロッパの西側はOEM（自動車メーカー）車が中心ですが、東側では改造車が多く占めます。

イタリアでは、FIATがマーケットリーダーになって天然ガス自動車のモデルも一番多く投入され、FIAT Natural Powerと呼ばられています。ドイツ、フランスなども、FIATが中心に販売を行っています。トラック、バスについては、ヨーロッパの自動車メーカーとガス会社にとって今後の大きなマーケットとなっており、特にバスは都市部における大気汚染の緩和が期待されています。

また欧州では、各国が単独で進めるのではなく、EU全体で達成することに主眼をおり、2014年には代替燃料インフラの展開のためのDAFIと呼ばれている指令を策定しました。この指令は、ガススタンドを主だったハイウェイに、400km間隔でLNGスタンド、100km間隔でCNGスタンドを作るというもので、今後の天然ガス自動車の普及をサポートしていくものです。

※3 OEM車：Original Equipment Manufacturer Vehicle…メーカーが自ら生産した天然ガス自動車のことをOEM車と言い、ガソリン車やディーゼル車として一度完成させた車両を後改造によってCNG車にしたものと区別している。
■イタリア
歴史的にも最も長く天然ガス自動車を使用し、約88万台普及しています。乗用車が99%、ガスタンドも約1,060ヶ所近くとなっています。
イタリアでは様々な政策減税などが実施されており、CO2の削減に合わせてインセンティブが与えられます。その他の自然災害、税制課せられない、無料で駐車することができる、汚染度が高い都市には、自動車のナンバープレートの奇数偶数によって、都市の中では運転できない日があるにもかかわらず、天然ガス自動車の場合には免除されるというケースもあります。

■ドイツ
ドイツは、ほぼ10万台の天然ガス自動車に対し、ガスタンドは約900ヶ所普及しています。
当初は、タクシー、警察、企業向けが多かったのですが、ドイツに「天然ガス自動車協会」が作られてからは、状況が変わり始め、天然ガス自動車に関するステークホルダーが集まり、普及戦略を打ち立て、現在欧州では最も普及する国の1つとなりました。

■スウェーデン
スウェーデンでは地方自治体が中心となって普及しています。当初都市レベルで推進され、次に行政が関わるようになり、特に化石燃料に取って代わる再生可能エネルギー（バイオメタン）が利用されています。交通分野だけでなく、発電分野でも2050年までに再生可能エネルギーの割合が増大する目標をかかげて取り組んでいます。

■フランス
フランスは主に市バス中心に普及が進んでいます。ただし、欧州の中で車の台数に対してガスタンドの割合が少ないと、特に公共ガスタンドのインフラを大幅に整備していく必要があります。

2.3 北米での普及状況
現在アメリカでは、全車両数の0.06%（約16万台）のみ普及にとどまっています。そのうち55%が乗用車で、バスは30%、特にバスは都市部における汚染改善につながるため多く普及しています。大型車両は、学校用のバス、ゴミ収集車両、長距離トラックなどを中心に合計8,700台、長距離トラックはLNGトラックが多くを占めています。
ガスタンドは、約1,850ヶ所存在し、天然ガスが非常に豊富にあるため、現在もCNGのガスタンドの数は増えていきます。
自動車においては、開発初期の成長は停滞しましたが、自動車メーカーに天然ガス自動車をつくることを奨励した1990年代から急増しました。最も大きなポイントは、1988年にNGV Coalitionというアメリカの天然ガス自動車協会が設立されたことが契機となりました。ここで政府と協力して、いろいろな政策を導入し、市場が動き始めました。1993年のClean Cities Programが効果的で、普及に拍車がかかりました。その普及は主にカリフォルニア州の南で、大気汚染改善の手段として、現在も普及しています。

2015年の天然ガス自動車の生産台数とガス販売量は2014年より減少しましたが、大型車両は横ばいでした。原因は、ガソリン及びディーゼルの価格の低下です。しかし、ゴミ処理車や、トラック・バスは継続して伸びています。

また、環境保護庁やカリフォルニア大気資源委員会などは、天然ガス自動車への改造を承認し、さらにはSmall vehicle modifiers（SVM）という団体が、天然ガス車両に転換するときに自動車メーカーの品質も保証します。改造車に対しても、販売・サポートメンテナンスの不安払拭を行うことにより、普及をサポートしているのも大きな特徴のひとつです。

また、LNGスタンドは74ヶ所存在します。トラックが走行する道路に適切な間隔でLNGガスタンドが設置されています。

現在、エネルギー省では、ガソリンの消費量を年間25億ガロン減少させる計画があり、約100の都市が参加しています。これは、公共および民間が参加しており、都市ごとに戦略を策定して、主に天然ガス車の代替を計画しており、益々の普及が期待されています。

2.4 アジアでの普及状況

中国、イラン、バキスタン、インドといった天然ガスを産出する国々では自国資源の有効利用と大気環境改善の観点から、天然ガス自動車の普及が進められています。

■中国

2014年の年間生産台数は約105.6万台にのぼり、このうちタクシーが約67.8万台、路線バスが約4.9万台、一般のバスが約18.4万台、トラックが14.5万台です。LNG（液化天然ガス）車としては約11万台も普及が進んでいます。2015年時点の保有台数は500万台を超え、世界最大規模となりました。また、天然ガススタンドは、2014年時点でCNG（圧縮天然ガス）スタンドが約3,700ヶ所、LNGスタンドが約2,500ヶ所となっています。中国において天然ガス自動車の急速な普及は、1960年代の燃料不足対策、1990年から2009年の大気環境対策、2011年から2015年の第12次5カ年計画として行われた政府主導による天然ガス自動車の開発政策や購入に関する補助政策によるものです。また、これらの政策が行われた原因は、「石油消費量の増大」「深刻な大気汚染」「燃料価格の急上昇」「車両の急発展」であると、中国政府機関の道路運輸協会が指摘しています。
2.5 天然ガス自動車に関係する世界の組織

天然ガス自動車の普及組織としては、ガス産業の団体であるIGU、世界的活動を行う組織としてNGV Global、各地域の普及組織として欧州のNGVA Europe、北米のNGVAmerica、アジアのANGVAなどがあります。さらに国レベルでの普及活動を行う組織がイギリス、カナダ、韓国、日本などにあります。これらの組織がお互いに情報交換を行うなど有機的に結びついて、天然ガス自動車の普及活動を行っています。

■ IGU (International Gas Union：世界ガス連盟)
- 世界のガス産業の技術的・経済的発展と進行を目的に、1931年に設立されたガス産業を中心としたNPOである：2017年1月現在90ヶ国加盟。
- IGUは3年ごとに世界ガス会議を開催し、その3年間にガス産業のあらゆるテーマについて討論、検討などを委員会やタスクフォームで行っている。
- 天然ガス自動車については、現在、第5専門委員会（WOC5：ガス利用分野）で産業用／家庭用機器、燃料電池などとともに検討されている。
- 2015年6月には第26回世界ガス会議（WGC2015）がフランスのパリで開催され、約100ヶ国から3,500人以上が参加した。次回の第27回世界ガス会議（WGC2018）は、2018年6月にワシントンD.C.で開催される予定である。
 ◆ホームページアドレス：http://www.igu.org

■ NGV Global（旧名称IANGV：国際天然ガス自動車連盟）
- 天然ガス自動車の全世界的な普及・発展を目的に、1986年に創設された世界的組織で、2010年に名称をNGV Globalに変更したもの。事務局はニュージーランドにある。現在、10の国・地域NGV協会を含む300以上の企業・団体が加盟している。
- 主な活動としては、1988年以降2年ごとに開催している国際天然ガス自動車会議・展示会のほか、世界銀行などへのロビー活動などを行っている。近年IGUの活動にも協力している。
- 日本では、2000年10月に横浜市でNGV2000（第7回天然ガス自動車会議・展示会）を開催した。
天然ガス自動車の普及に向けて

は2017年3月にロッテルダム（オランダ）にて開催された。
◆ホームページアドレス：http://www.ngvglobal.org

■ NGVA Europe（Natural & bio Gas Vehicle Association Europe：欧州NGV協会）
・ NGVA Europeは、天然ガス、バイオメタンの自動車用燃料の普及を目的とした組織であり、欧州の天然ガス自動車関係企業等が参加している。
・ 運営委員会として、政治、技術、行事委員会の3つの委員会を持ち、天然ガス自動車の安全性、品質、コストパフォーマンス性を確保するため、欧州のさまざまな組織と協力しながら活動を行っている。
◆ホームページアドレス：http://www.ngva.eu

■ NGV America（Natural Gas Vehicle for America：アメリカNGV協会）
・ アメリカのガス事業者を中心に天然ガス自動車の普及のために組織されたNGVC（Natural Gas Vehicle Coalition）から発展した組織である。
・ 現在は、天然ガスおよびバイオメタンガスを輸送用燃料として利用することの普及活動を行っている。
・ 年1回定期的に会議を開催したり、ロビー活動、マスコミへの意見広告など積極的に活動している。
◆ホームページアドレス：http://www.ngvamerica.org

■ ANGVA（Asia Pacific Natural Gas Vehicle Association：アジア太平洋NGV協会）
・ 日本ガス協会が主催したアジア太平洋NGV協力会議を前身に、2003年に発足したアジア／オセアニア地域の天然ガス自動車普及を目的とした組織である。2015年9月現在、20ヶ国、68社・団体が会員になっている。
・ ANGVAの目的は、アジア太平洋地域において天然ガス自動車を普及させることにより、環境にやさしい燃料である天然ガスのマーケットを継続的に収益性のあるマーケットとして開発することである。
・ 2年ごとに国際会議を主催しており、2015年11月に中国で第6回会議が開催され、次回は2017年10月にイラクにて開催予定である。
◆ホームページアドレス：http://www.angva.org
3. 天然ガス自動車の普及に向けて

3.1 天然ガス自動車普及により期待できる効果

(1) エネルギーセキュリティの向上
輸送用燃料はほとんどが石油に依存しています。天然ガス自動車の普及により、輸送用燃料を多様化でき、エネルギーの安定化が図れます。

(2) 交通・物流ネットワークの強靭化
天然ガススタンドのガスは、ほとんどが中圧で供給されており、そのガス管は東日本大震災クラスの地震に対しても十分耐えられる構造のため、災害後のスタンド営業継続に支障をきたすことなく、交通・物流の強靭化に大きく貢献できます。

(3) 環境貢献
天然ガス自動車は、光化学スモッグ・酸性雨などの環境汚染の原因となる窒素酸化物（NOx）の排出量が少なく、換気など呼吸器疾患の原因となる黒煙や粒子状物質（PM）をほとんど排出せず、大気環境改善に貢献できます。また、地球温暖化の原因となる二酸化炭素（CO₂）の排出量をガソリン車やディーゼル車より低減でき、地球温暖化防止に貢献できます。

(4) 経済性
非在来型天然ガスであるシェールガスやCBM（コイル・ベッド・メタン：石炭層に吸着している天然ガス）の生産拡大により、可採年数の拡大および価格の安定化が見込まれます。

3.2 エネルギーセキュリティの向上

(1) 求められるエネルギーセキュリティ
輸送部門のエネルギー源は、大きく石油に依存している中、2011年3月の東日本大震災においてはサプライチェーンの寸断によりガソリンスタンドに給油のために長蛇の列ができ、市民生活にも甚大な影響がでした。生産のライフラインである運送事業者においても、緊急物資を輸送する際、貨物用燃料の軽油の調達に関東地区だけでなく関西地区においても苦慮していました。一方、天然ガススタンドは一部の津波被害を受けたものの、電源の回復と共に営業を開始できたため、天然ガス自動車のユーザーからは「非常に助かった」と、数多くのお声をいただきました。震災後の2週間は関東地区の40ヶ所の天然ガススタンドで充填が20%増加しました。

また、図2のように日本では他部門に比べて運輸部門における石油依存度が高く、大きな課題となっています。

| 経済産業省 資源エネルギー庁 平成27年度総合エネルギー統計 | 9 |

※4 各部門のエネルギー源における石油の割合

図2 各部門のエネルギー源における石油の割合

石油 石炭 天然ガス・都市ガス 電力 その他
(2) モビリティの適材適所
経済産業省「エネルギー基本計画」（2014年4月）では、「次世代自動車」の普及促進として、自動車等の様々な分野において需要家が多様なエネルギー源を選択できる環境の整備を行い、「次世代自動車」の新車販売に占める割合を、2030年までに5割〜7割とし、同様に「先進環境対応車」は、2020年において8%とするとしています。また、次世代自動車の普及・拡大に当たっては、インフラ整備が必要不可欠であると明記されています。なお次世代自動車とは、ハイブリッド自動車・電気自動車・プラグインハイブリッド自動車・燃料電池自動車・クリーンディーゼル車・CNG自動車等となっています。
現在検討されている代替エネルギーとしては電気、天然ガスと水素が代表的です。貨物分野では小型車では電気自動車も実用的ですが、重量車では天然ガス自動車のみが実用的な車両と言えます。

※5 出典：日経ビジネス2010.12.6

(3) 天然ガス自動車への国の政策

総合物流施策大綱（2017-2020） 2017年7月 閣議決定
総合物流施策大綱とは、政府における物流施策等の指針を示すもので、「我が国の経済成長と国民生活を持続的に支えられる『強い物流』を構築していく」ことを目指すものです。

輸送モードの省エネ化・低公害化
物流分野における主要なCO₂排出源であるトラックをはじめ、船舶、航空、鉄道の各輸送モードの省エネ化、低公害化を進め、天然ガスや水素等によるエネルギー転換を促進する。

国土強靭化アクションプラン2017 2017年6月 国土強靭化推進本部（内閣官房国土強靭化推進室）
「国土強靭化（ナショナル・レジリエンス）」とは、国家のリスクマネジメントであり、強くてしなやかな国をつくることで、日本の産業競争力を強化し、安全・安心な生活をつくることを目指すものです。

交通・物流（物流ネットワークの強靭化の推進）
トラック事業者のBCP策定の推進、エネルギーセキュリティの推進（C・LNG車両の普及）等に取り組む。
エネルギー基本計画 2014年4月 閣議決定
エネルギー基本計画とは、エネルギー政策の基本的な方向性を示すためにエネルギー政策基本法に基づき政府が策定するものです。

多様なエネルギー源を選択できる環境整備の促進
次世代自動車*については、2030年までに新車販売に占める割合を5割から7割とすることを目指す。

地球温暖化対策計画 2016年5月 閣議決定
「地球温暖化対策計画」とは、COP21で採択されたパリ協定や2015年7月国連に提出した「日本の約束草案」を踏まえ、日本の地球温暖化対策を総合的かつ計画的に推進するための計画です。

次世代自動車*の普及、燃費改善
エネルギー効率に優れる次世代自動車等の普及拡大を推進する。

低炭素物流の推進
トラック輸送についても一層の効率化を推進する。このため、大型CNGトラック等車両の大型化（中略）を推進する。

次世代自動車：ハイブリッド自動車、電気自動車、プラグインハイブリッド自動車、燃料電池自動車、クリーンディーゼル車、圧縮天然ガス自動車等

[特集] 近年、レジリエンスを中心としたテーマで開催されたシンポジウム等

1 国土強靭化に向けての輸送用燃料の多量化と物流のさらなるグリーン化
〜天然ガス自動車の可能性を追求する〜

2014年10月23日（木）早稲田大学 井深大記念ホール 国際会議場内
国土強靭化のために急務となっているエネルギーの多量化、低炭素社会の実現に向けた物流のグリーン化、またシェールガスの本格的な輸入など、天然ガス自動車への期待と注目が集まりつつある中で、2014年秋、早稲田大学において、産学官が連携して天然ガス自動車の可能性を発信するシンポジウムを開催しました。
主催：早稲田大学
第2回 先進エネルギー自治体サミット 〜レジリエンツ（強靭）な社会構築に向けて〜
（世界における次世代モビリティ最前線 〜天然ガス自動車によるレジリエンスコミュニティの構築〜）

・2016年12月9日（金） 東京ビッグサイト 会議棟1階 レセプションホールA
・「天然ガス自動車を核とした災害に強い街づくりのためになにが必要か」をテーマに、国・自治体から天然ガス自動車の普及支援策、民間事業者からは強靭化への取組み事例等が紹介され、天然ガス自動車によるレジリエンスコミュニティ構築に向けた議論が行われました。
・主催：一般社団法人 レジリエンスジャパン推進協議会

3.3 環境貢献

(1) 天然ガス自動車の環境特性

・光化学スモッグ・酸性雨などの環境汚染の原因となる窒素酸化物（NOx）、炭化水素（HC）の排出量が少なく、硫黄酸化物（SOx）もほとんど排出されません。
・喘息などの呼吸器疾患の原因となる黒煙や粒子状物質（PM）はほとんど排出されません。
・地球温暖化の原因となる二酸化炭素（CO₂）の排出量を、ガソリン車より約2割低減できます。

図4 従来車とNGVのCO₂排出量の比較例※6

図5 重量車（車両総重量3.5t超〜12t以下）のNOx・PM規制値との関係

※6 出典：国産1,500㏄小型バンで比較。メーカークタログ値を用いて算出。
(2) 運輸部門のCO₂排出

貨物自動車の台数は図6のように、自動車台数比では20%弱ですがCO₂の排出量は輸送部門の約35%と高く、特に大型トラックは1台あたりの排出量が大きくため、天然ガス自動車導入によるCO₂排出削減効果は高いと言えます。

図6 輸送部門のCO₂排出状況

(3) 天然ガス自動車のCO₂排出量

・小型バンでガソリン代替の場合

天然ガス自動車は、燃料種の違いによりCO₂排出量が20%弱削減できます。（図4参照）

・トラックでディーゼル代替の場合

大型天然ガストラックと大型ディーゼルトラックのCO₂排出量の実測値として、走行実績の一例を表2に示します。

表2 大型トラック走行実績の一例 ※7

<table>
<thead>
<tr>
<th>車種</th>
<th>様々な細部</th>
<th>大型天然ガストラック</th>
<th>大型ディーゼルトラック</th>
</tr>
</thead>
<tbody>
<tr>
<td>計測期間</td>
<td>車種</td>
<td>燃費</td>
<td>3.58km/㎥</td>
</tr>
<tr>
<td>2016年2月〜2017年1月</td>
<td>大型天然ガストラック</td>
<td>3.63km/L</td>
<td></td>
</tr>
<tr>
<td>走行区間</td>
<td>ツーリングランナー</td>
<td>0.279㎥/km</td>
<td>0.275L/km</td>
</tr>
<tr>
<td>東京〜新潟往復（高速道路利用）</td>
<td>CO₂排出量原単位</td>
<td>2.3kg-CO₂/㎥</td>
<td>2.58kg-CO₂/L</td>
</tr>
<tr>
<td>1km走行時のCO₂排出量</td>
<td>1km走行時のCO₂排出量</td>
<td>0.622kg-CO₂/㎞</td>
<td>0.710kg-CO₂/㎞</td>
</tr>
<tr>
<td>CO₂排出量比</td>
<td>CO₂排出量比</td>
<td>88</td>
<td>100</td>
</tr>
</tbody>
</table>

※ⅰ 燃費

某運輸会社様 H29.6.15 NGVフォーラム研究会での発表資料より

※ⅱ CO₂排出量原単位

環境省温室効果ガス排出量算定方法ガイドライン（H29.3）より

軽油も環境省ガイドラインに搭載あり

大型天然ガストラックは、大型ディーゼルトラックに比べ1km当たりの排出量平均で、約12%のCO₂排出削減効果がありました。

※7 某運輸会社の実績データに基づいた大型CNG車対ディーゼル車比較
3.4 経済性

(1) 2040年までのエネルギー需要見通し

IEA（国際エネルギー機関）が毎年発表する World Energy Outlook 2016（WE02016※8）によると、天然ガスの需要を下記のように見通している。

- 世界的天然ガス需要は、2014年時点の約3,502bcm（1bcm=10億㎥）から、新政策シナリオでは、2040年に約5,219bcmへ年率約1.5%伸びる見通しである。
- 2040年までの世界全体の天然ガス消費量増加分の約85%はOECD非加盟国で、特に中国と中東で消費量が増大する。中国のガス消費量は2040年には現在の約3.2倍、中東のガス消費量は2020年にはEUのガス消費量を超える見通しである。

(2) 原燃料価格の動向と安定調達の取組み

①天然ガス価格の動向

- アメリカのガス価格は、非在来型ガスの生産コストの上昇を受けて、相対的な価格は上昇すると見込まれる。
- 2040年の北米のガス価格は6.9$/MBtu、ヨーロッパのガス価格は11.5$/MBtu、日本のガス価格は12.4$/MBtuになる見込みである。日本のガス価格は2040年にはアメリカのガス価格の約1.8倍になると予想される。

※8 出典: World Energy Outlook 2016
②都市ガス事業者によるLNG安定調達の取組み

増大するガス需要に対応するため、複数の国から輸入するなど、安定調達に努めています。また、さらなる価格低減を目指して、上流事業への参画に取り組んでいます。

例えば
・安定調達のための長期にわたるLNG契約、輸入量の増大に合わせた柔軟な引取契約。
・新たな取組みとして、上流権益の獲得、非在来型ガス田への進出やFLNG（洋上浮体式）を活用した中小ガス田開発への参画。
・複数のプロジェクトと契約することによる調達先の多様化。

図8 LNG調達先

※9 一般社団法人 日本ガス協会 ガス事業便覧（平成28年度版）
3.5 日本ガス協会の2030年ビジョン

日本ガス協会は2030年に向けて天然ガスの普及拡大ビジョンを次のように掲げています

(1) 天然ガスシフト・高度利用の推進

1. 産業部門
 - 熱需要の天然ガスへの燃料転換の加速（高度利用エンジニアリングの活用促進）
2. 業務用・家庭用部門
 - 高性能・高機能ガスシステムの普及拡大、再生可能エネルギー、エネルギーマネジメントの導入
3. 輸送部門
 - 天然ガス自動車（大型CNGトラック）の普及展開、燃料電池自動車向け水素供給インフラの整備

表3 天然ガスの普及拡大（ポテンシャル）

<table>
<thead>
<tr>
<th></th>
<th>2010年</th>
<th>2030年</th>
</tr>
</thead>
<tbody>
<tr>
<td>ガスコージェネレーション</td>
<td>460万kW</td>
<td>3000万kW</td>
</tr>
<tr>
<td>ガス空調</td>
<td>1300RT</td>
<td>2600RT</td>
</tr>
<tr>
<td>産業用熱需要天然ガス比率</td>
<td>10.7%</td>
<td>25.0%</td>
</tr>
<tr>
<td>家庭用燃料電池</td>
<td>2万台</td>
<td>500万台（LPG含む）</td>
</tr>
<tr>
<td>天然ガス自動車</td>
<td>4万台</td>
<td>50万台</td>
</tr>
</tbody>
</table>

(2) 天然ガス自動車の今後のビジョン

- 新・国家エネルギー戦略（2006年）の中で、輸送エネルギー部門で石油依存度を80%まで下げる燃料の多様化
- 2030年の普及台数：約50万台（全トラック250万台の約2割）

環境貢献

- NOx・PM削減（地球環境対策）
- CO₂削減（温暖化対策）

輸送分野における燃料の多様化

| | | |
|------------------------| | |
| 「新・国家エネルギー戦略」（2006年）の中で、輸送エネルギー部門で石油依存度を80%まで下げる |

想 定

- スタンド
 - 物流拠点を中心に大型スタンド（年間300万㎥）を約1,000箇所整備
 - 1箇所にて大型トラック50台、都市内トラック400台が充填
- 車両
 - メーカーによる大型車投入 2015年～
 - 高効率化
 - 2011年時点のディーゼルトラックと比較して
 - 2015年～ 25%CO₂削減
 - 2020年～ 50%CO₂削減
表4 【数値の概要】普及台数とCO₂削減量・ガス販売量・スタンド数

<table>
<thead>
<tr>
<th></th>
<th>2020年</th>
<th>2030年</th>
</tr>
</thead>
<tbody>
<tr>
<td>大型天然ガス車普及台数</td>
<td>1.3万台</td>
<td>5万台</td>
</tr>
<tr>
<td>都市内天然ガストラック普及台数</td>
<td>10万台</td>
<td>45万台</td>
</tr>
<tr>
<td>合計普及台数</td>
<td>11万台</td>
<td>50万台</td>
</tr>
<tr>
<td>CO₂削減量</td>
<td>79万トン</td>
<td>670万トン</td>
</tr>
<tr>
<td>（軽油代替量と2009年実績比）</td>
<td>(9.2億㎥、9.5億L、3.5%)</td>
<td>(27.3億㎥、28.5億L、10.4%)</td>
</tr>
<tr>
<td>建設スタンド数</td>
<td>260箇所</td>
<td>1,000箇所</td>
</tr>
<tr>
<td>スタンダード費用累計</td>
<td>624億円</td>
<td>2,104億円</td>
</tr>
</tbody>
</table>

①天然ガス自動車の普及ロードマップ

図9 天然ガス自動車の普及ロードマップ

（今後の主な取組み）

• 高圧容器等のコストダウンや、国内外の自動車メーカーがCNG車を国内市場に投入しやすい環境を作り出すため、規制緩和や海外基準の導入等を働きかけます。

• CNGエンジンの開発を行い、トラック分野のさらなる高効率化、低公害化を進め、他の次世代自動車との差別化を図ります。

• 荷主や運送事業者、スタンド事業者の協力の下、天然ガス自動車と天然ガススタンドを計画的に普及させることにより、天然ガススタンドの利便性の向上や運営の安定化を図ります。

• CNG燃料費低減を進めることで、運送事業者の経済性に寄与し、天然ガススタンド経営の安定化を図ります。

• 天然ガス自動車、天然ガススタンドの普及拡大には、政府の積極的な支援が必要なため、普及政策を明確に位置付け、また、補助、優遇税制等の継続、拡大をするよう働きかけます。
②普及シナリオ

貨物車を中心とした天然ガス自動車の普及
都市と都市をつなぐ貨物輸送（大型・長距離）と都市内輸送での普及拡大

●物流の大動脈である拠点間・都市間輸送に大型天然ガストラックが導入されることで、高いCO₂削減効果が図れます
●都市間輸送のルートである高速道路や貨物ターミナルへ設置された大規模スタンドで燃料を供給することで、大規模化によるスタンド経営の安定化が図れます
●天然ガスの小型トラックや軽自動車などの普及が進んでいる都市内輸送には、引き続き天然ガス自動車が貢献します

③天然ガススタンド拠点整備の方向性

長距離の大型トラックや都市内集配の中・小型トラックが集まる各地の物流拠点に合わせ大型天然ガススタンドを整備。
3.6 天然ガス自動車普及に関する最近のトピック

トピック1
メーカー車として初のCNGを専用燃料にしたLNGローリー車（ギガCNG車）が導入されました（2016年10月）

ニヤクコーポレーションさまに天然ガスローリー車が納車されました。当車両の導入は「大型天然ガストラックを活用した低炭素中距離貨物運送のモデル構築事業」の補助事業であり、併せて大阪ベイエリアトラックエコ・ステーション（天然ガススタンド）の設備増強も行いました。

トピック2
「平成28年度近畿運輸局交通関係環境保全優良事業者等表彰」を富士運輸株式会社さまが受賞

平成20年度より国土交通省近畿運輸局では交通に関する環境改善の成果が顕著と認められた事業者を表彰しています。富士運輸さまはCO₂削減への取り組みとして、[大型天然ガストラックの積極的な導入（10台）]や「省燃料につながるアルミホイール・タイヤの装着」、「GPS位置情報サービスシステムによる効率的な車両管理」、空車走行率を下げるため様々な積荷に対応できる架装を施した「スーパーマルチ車両」導入など継続して環境保全への取り組みを実施されました。表彰式は9月2日に大阪歴史博物館で行われ、代表取締役社長松岡弘晃さまが受賞事例の講演をされました。
トピック3
センコー株式会社三重支店さま大型天然ガストラック導入

今年度、東邦ガス管内におけるメーカー車第1号として、センコー株式会社三重支店さまが、いすゞ自動車株式会社の大型天然ガストラック「ギガ」を導入されました。この車両は、平成29年5月から三重県四日市市を起点に尾鷲市や名古屋市方面へ走行しています。

センコー株式会社さまは、国際規格である「ISO14001」に加え「グリーン経営認証」を取得されており、モーダルシフトに組み優良事業者賞「新規開拓部門」を受賞されるなど環境意識の非常に高い企業様です。また、同社小牧支店さまでは、平成26年に改造車で大型天然ガストラックを導入頂いており、2台目となります。

昨年、東邦ガス主催の大型天然ガストラック見学会において実車を確認いただき、環境省の「先進環境トラック・バス導入加速事業」補助を活用され、導入へと至りました。

～お客さまの声～
（センコー株式会社三重支店 小木曽センター長）

今回の車両は、コンテナ輸送用に導入をしているためモーダルシフトと天然ガス自動車の併用が環境に良いと評判が良いです。また、運転手からは、音が非常に静かで、排気の臭いもないため乗り心地が非常によいとの声があり、心配をしていたパワー面などについてもディーゼルと大きな差はなく満足しています。

トピック4
高効率天然ガストラックの実証走行開始

日本ガス協会は、2017年4月から高効率天然ガストラックの実証走行を開始しました。試験期間は2年間で、1年目はエンジンのダウンサイジングによる高効率化、2年目はミラーサイクルによる更なる高効率化を図ります。佐川急便さま、新潟運輸さまのご協力により、関東地域における集配輸送の業務に開発車両をご使用いただき、燃費と環境性の一層の向上を実証するとともに、使い勝手等を検証します。
3.7 国内自動車メーカーの動き

(1) 大型CNGトラックの市場本格投入と今後の市場開発

いすゞ自動車は2015年に大型CNGトラックの市場投入を、2016年には車型の追加を発表いたしました。今後も、順次車型追加に向けた取組みを予定しています。

また、天然ガス自動車のさらなる進化を目指し、燃費向上や航続距離向上などの技術開発を進めています。

(2) LNGトラックの取組み

いすゞ自動車は、さらなる長距離運行を実現するため、LNG車開発にも取り組んでいます。実用化に向けて、以下の各省庁の技術開発に参画（受託）しています。

・国交省：次世代大型車実用化促進事業（2015年度〜2017年度）
 事業名：大型LNG車の実用化に向けたBOG排出低減技術の開発

・環境省：平成28年度CO₂排出削減対策強化誘導型技術開発・実証事業（2016年度〜2018年度［計画］）
 事業名：LNG車開発・実路走行による実証試験・LNG車用燃料充填インフラ建設

3.8 主な規制緩和に関する取組み

(1) 天然ガス自動車用等のガス容器に関する保安基準への海外規格の追加

海外規格の追加により、海外製の高圧容器や天然ガス自動車の輸入が容易になるようになり、今後の普及を促進するものとして期待されます。

行政刷新会議の下の「規制・制度改革に関する分科会」におけるエネルギー分野での検討の結果（平成24年4月3日閣議決定）を踏まえ、自動車に搭載される高圧ガス容器の規格について、国連基準（UNECE-R110等）の規格を取り入れた、高圧ガス保安法等の見直しに向けた検討を行いました。同基準に定められた規格の安全性を確認するために、平成25年度より日本ガス協会に「容器研究会」を設置し、学識経験者等による検討を進めるとともに、平成26年度には、LNG容器に関する規格の安全性の確認も行いました。これらを踏まえて日本が提出した同基準の改正提案が、平成28年3月に国連の会議で採択され、10月に発効しました。これにより基準の国内法への取り込みの支障がなくなったことから、基準との相互承認を目指した国際法の改訂検討を経済産業省や国土交通省が進め、平成29年6月30日に高圧ガス保安法および道路運送車両法の省令・告示等が改正・施行されました。
(2) 天然ガス自動車用の車載容器の別車両への転載

天然ガス自動車に搭載されたガス容器は、15年間使用することができますが、自動車が廃車になった場合、ガス容器の使用可能期限が残っていたとしても、別の車両に転載することができません。そこで、容器を転載する場合の安全性の確認方法や、容器を車両から取り外した後の保管方法等について検討し、容器を別の車両に転載することができるよう、規制緩和を要望しています。経済産業省省託事業として平成26年3月に高圧ガス保安協会がまとめた報告書において、CNG車両間での燃料装置用容器の転載の安全性が評価されましたので、現在、省令等の改正に向け経済産業省に働きかけています。

(3) 天然ガスディスペンサーと軽油等給油ディスペンサーの同一アイランド上への設置

これまで消防法や危険物の規制に関する規則等では、天然ガスの充填のための停車スペースと給油のための停車スペースを共有化し、給油空地内に天然ガスディスペンサーを設置できないと規定されていました。平成25年の規制改革会議において、天然ガス充填のための停車スペースと給油のための停車スペースの共有化が国際先端テストの議題として取り上げられ、ドイツ等諸外国の事例を踏まえ、天然ガス充填設備を併設した給油取扱所において、天然ガス充填のための停車スペースと給油のための停車スペースを共有化するための方策について検討し、結論を得ることが閣議決定されました。これを受け、平成25年から平成27年にかけて総務省消防庁が主催する検討会が開催され、「天然ガススタンド併設給油取扱所の停車スペースの共有化に関する安全対策の在り方に関する報告書」が公表されました。この報告書を基に、給油取扱所において天然ガススタンドのガス充填設備（ディスペンサー及び配管）を給油空地に設置し、給油及び圧縮天然ガス充填のための停車スペースを共有化する場合の技術基準が設定され、これに関連する条文（危険物に関する規則第25条の2、第27条の4及び第28条の2の7）が平成29年1月26日に改正されました。

これにより、この技術基準に従って、天然ガススタンドのディスペンサー及びガス配管を給油空地に設置できることとなりました。
(4) CNGディスペンサー周辺における防爆自主基準の制定

「高圧ガス保安法及び関係省令の運用及び解釈について（内規）」（平成19年・06・18原院第2号、改正平成23・06・28原院第4号）の「⑵一般高圧ガス保安規則の運用及び解釈について・第6条関係」及び「⑷コンビナート等保安規則の運用及び解釈について・第5条関係」には、防爆指針及びガイドに基づき非危険箇所に分類された場所に設置する電気設備は火気を取り扱う施設には該当せず、防爆構造を有する必要がないことが示されています。

日本ガス協会では、一般高圧ガス保安規則第7条第1項及び第2項又はコンビナート等保安規則第7条第1項及び第2項の適用を受ける圧縮天然ガススタンドに設置するディスペンサー及び接続配管における非危険箇所を明確にするために、「CNGディスペンサー周辺における防爆自主基準制定のための検討委員会」を開催し、ディスペンサー周辺の防爆危険箇所（以下、「危険箇所」という。）の区分と範囲を設定する当防爆自主基準を制定しました。
4. 4.1 天然ガス自動車概要

<table>
<thead>
<tr>
<th>年</th>
<th>事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭和12</td>
<td>京成電気鉄道（京成バス）で天然ガス自動車試験運転。</td>
</tr>
<tr>
<td>昭和14</td>
<td>千葉、東京方面で800〜1,000台の天然ガス自動車が走行。</td>
</tr>
<tr>
<td>昭和36</td>
<td>新潟交通の天然ガスバスが545台となり最盛期を迎え。その後、昭和66年には姿を消す。</td>
</tr>
<tr>
<td>昭和59</td>
<td>東京ガスで天然ガス自動車第1号を試作。 (低公害車として天然ガス自動車が再度我が国に登場)</td>
</tr>
<tr>
<td>平成2</td>
<td>通商産業省資源エネルギー庁補助事業「天然ガス自動車実用化調査」開始。 (〜平成13年度)</td>
</tr>
<tr>
<td>平成3</td>
<td>「天然ガス自動車補助システム」設立。</td>
</tr>
<tr>
<td>平成4</td>
<td>日本ガス協会にて天然ガス自動車プログラム部を設置。</td>
</tr>
<tr>
<td>平成4</td>
<td>通商産業省資源エネルギー庁補助事業「天然ガス自動車実用化調査」開始。 (〜平成6年度)</td>
</tr>
<tr>
<td>平成5</td>
<td>天然ガス自動車が運輸大臣認定車扱いとなる。天然ガス自動車及び充填所に関する税制上の優遇措置（法人税、自動車税、自動車取得税の軽減）がとられる。</td>
</tr>
<tr>
<td>平成5</td>
<td>通商産業省工業技術院補助事業「天然ガス自動車用充填機の実用化開発」で昇圧供給装置の開発が開始。 (〜平成6年度)</td>
</tr>
<tr>
<td>平成5</td>
<td>「自動車NOx法」の車種規制施行によりNOx削減強化開始。</td>
</tr>
<tr>
<td>平成5</td>
<td>高圧ガス取引業省令等改正により、天然ガススタンド基準が導入される。</td>
</tr>
<tr>
<td>平成6</td>
<td>通商産業省資源エネルギー庁補助事業「天然ガス自動車補助事業」（〜平成8年度）</td>
</tr>
<tr>
<td>平成6</td>
<td>環境庁低公害車集中利用モデル事業が開始され、自治体による集中導入に補助がなされる。</td>
</tr>
<tr>
<td>平成6</td>
<td>日本ガス協会にて「大型天然ガストラックの普及推進事業」を開始。</td>
</tr>
<tr>
<td>平成7</td>
<td>「地球温暖化対策促進大綱」が決定され、導入費用補助、税制優遇、低利融資等によるクリーンエネルギー自動車普及促進がとられる。</td>
</tr>
<tr>
<td>平成8</td>
<td>高圧ガス取引業省令等改正により、天然ガススタンド基準が導入される。</td>
</tr>
<tr>
<td>平成9</td>
<td>通商産業省资源エネルギー庁低公害自動車普及基盤整備事業としてエコ・ステーションへの補助事業開始。</td>
</tr>
<tr>
<td>平成9</td>
<td>「自動車NOx法」の車種規制施行によりNOx削減強化開始。</td>
</tr>
<tr>
<td>平成9</td>
<td>環境庁低公害車集中利用モデル事業が開始される。</td>
</tr>
<tr>
<td>平成9</td>
<td>総合エネルギー対策推進閣僚会議において、「新エネルギー導入大綱」が決定され、クリーンエネルギー自動車の導入促進が示される。</td>
</tr>
<tr>
<td>平成7</td>
<td>ハイガス自動車の全国普及台数が1,000台を突破する。</td>
</tr>
<tr>
<td>平成9</td>
<td>高圧ガス取引業省令等改正により、天然ガススタンド基準が導入される。</td>
</tr>
<tr>
<td>平成9</td>
<td>「自動車NOx法」の車種規制施行によりNOx削減強化開始。</td>
</tr>
<tr>
<td>平成10</td>
<td>日本ガス協会にて「大型天然ガストラックの普及推進事業」を開始。</td>
</tr>
<tr>
<td>平成10</td>
<td>「地球温暖化対策促進大綱」が決定され、導入費用補助、税制優遇、低利融資等によるクリーンエネルギー自動車普及促進がとられる。</td>
</tr>
<tr>
<td>平成10</td>
<td>高圧ガス取引業省令等改正により、天然ガススタンド基準が導入される。</td>
</tr>
<tr>
<td>平成11</td>
<td>通商産業省資源エネルギー庁補助事業「天然ガス自動車普及促進対策事業」開始。</td>
</tr>
<tr>
<td>平成11</td>
<td>通商産業省資源エネルギー庁補助事業「天然ガス自動車実用化調査」にてLNG自動車の開発が開始。</td>
</tr>
<tr>
<td>平成11</td>
<td>総合エネルギー対策推進閣僚会議において、「新エネルギー導入大綱」が決定され、クリーンエネルギー自動車の導入促進が示される。</td>
</tr>
<tr>
<td>平成13</td>
<td>「地球温暖化対策促進大綱」が決定され、導入費用補助、税制優遇、低利融資等によるクリーンエネルギー自動車普及促進がとられる。</td>
</tr>
<tr>
<td>平成13</td>
<td>総合エネルギー対策推進閣僚会議において、「新エネルギー導入大綱」が決定され、クリーンエネルギー自動車の導入促進が示される。</td>
</tr>
<tr>
<td>平成14</td>
<td>「地球温暖化対策促進大綱」が決定され、導入費用補助、税制優遇、低利融資等によるクリーンエネルギー自動車普及促進がとられる。</td>
</tr>
<tr>
<td>平成15</td>
<td>高圧ガス取引業省令等改正により、天然ガススタンド基準が導入される。</td>
</tr>
<tr>
<td>平成15</td>
<td>「地球温暖化対策促進大綱」が決定され、導入費用補助、税制優遇、低利融資等によるクリーンエネルギー自動車普及促進がとられる。</td>
</tr>
<tr>
<td>平成16</td>
<td>高圧ガス取引業省令等改正により、天然ガススタンド基準が導入される。</td>
</tr>
<tr>
<td>平成16</td>
<td>「地球温暖化対策促進大綱」が決定され、導入費用補助、税制優遇、低利融資等によるクリーンエネルギー自動車普及促進がとされる。</td>
</tr>
<tr>
<td>平成17</td>
<td>高圧ガス取引業省令等改正により、天然ガススタンド基準が導入される。</td>
</tr>
<tr>
<td>平成17</td>
<td>「地球温暖化対策促進大綱」が決定され、導入費用補助、税制優遇、低利融資等によるクリーンエネルギー自動車普及促進がとられる。</td>
</tr>
<tr>
<td>平成18</td>
<td>高圧ガス取引業省令等改正により、天然ガススタンド基準が導入される。</td>
</tr>
<tr>
<td>平成18</td>
<td>「地球温暖化対策促進大綱」が決定され、導入費用補助、税制優遇、低利融資等によるクリーンエネルギー自動車普及促進がとられる。</td>
</tr>
<tr>
<td>平成19</td>
<td>高圧ガス取引業省令等改正により、天然ガススタンド基準が導入される。</td>
</tr>
<tr>
<td>平成19</td>
<td>「地球温暖化対策促進大綱」が決定され、導入費用補助、税制優遇、低利融資等によるクリーンエネルギー自動車普及促進がとられる。</td>
</tr>
<tr>
<td>平成20</td>
<td>高圧ガス取引業省令等改正により、天然ガススタンド基準が導入される。</td>
</tr>
<tr>
<td>平成20</td>
<td>「地球温暖化対策促進大綱」が決定され、導入費用補助、税制優遇、低利融資等によるクリーンエネルギー自動車普及促進がとられる。</td>
</tr>
<tr>
<td>平成21</td>
<td>高圧ガス取引業省令等改正により、天然ガススタンド基準が導入される。</td>
</tr>
<tr>
<td>平成21</td>
<td>「地球温暖化対策促進大綱」が決定され、導入費用補助、税制優遇、低利融資等によるクリーンエネルギー自動車普及促進がとられる。</td>
</tr>
<tr>
<td>平成22</td>
<td>高圧ガス取引業省令等改正により、天然ガススタンド基準が導入される。</td>
</tr>
<tr>
<td>平成22</td>
<td>「地球温暖化対策促進大綱」が決定され、導入費用補助、税制優遇、低利融資等によるクリーンエネルギー自動車普及促進がとられる。</td>
</tr>
</tbody>
</table>
4.2 天然ガス自動車導入の推移

図10 普及台数

4.3 全国の普及状況

(1) 天然ガス自動車

表5 地域ごとの普及台数 2017年3月31日現在

<table>
<thead>
<tr>
<th>車種</th>
<th>北海道</th>
<th>東北圏</th>
<th>関東圏</th>
<th>東海・北陸圏</th>
<th>近畿圏</th>
<th>中国・四国圏</th>
<th>九州圏</th>
<th>合計</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>軽自動車</td>
<td>136</td>
<td>113</td>
<td>3,480</td>
<td>2,200</td>
<td>3,226</td>
<td>559</td>
<td>987</td>
<td>10,701</td>
<td>23.1%</td>
</tr>
<tr>
<td>業用車</td>
<td>68</td>
<td>36</td>
<td>677</td>
<td>432</td>
<td>224</td>
<td>105</td>
<td>57</td>
<td>1,599</td>
<td>3.5%</td>
</tr>
<tr>
<td>小型貨物(バン)</td>
<td>65</td>
<td>96</td>
<td>2,518</td>
<td>1,321</td>
<td>1,718</td>
<td>176</td>
<td>185</td>
<td>6,079</td>
<td>13.1%</td>
</tr>
<tr>
<td>ブラック</td>
<td>484</td>
<td>171</td>
<td>10,721</td>
<td>2,243</td>
<td>5,196</td>
<td>666</td>
<td>455</td>
<td>19,936</td>
<td>43.0%</td>
</tr>
<tr>
<td>騏車</td>
<td>34</td>
<td>10</td>
<td>2,556</td>
<td>324</td>
<td>972</td>
<td>71</td>
<td>43</td>
<td>4,010</td>
<td>8.7%</td>
</tr>
<tr>
<td>バス</td>
<td>18</td>
<td>25</td>
<td>850</td>
<td>194</td>
<td>388</td>
<td>77</td>
<td>27</td>
<td>1,579</td>
<td>3.4%</td>
</tr>
<tr>
<td>フォークリフト等</td>
<td>1,927</td>
<td>298</td>
<td>58</td>
<td>11</td>
<td>89</td>
<td>0</td>
<td>29</td>
<td>2,412</td>
<td>5.2%</td>
</tr>
<tr>
<td>合計</td>
<td>2,732</td>
<td>749</td>
<td>20,860</td>
<td>6,725</td>
<td>11,813</td>
<td>1,654</td>
<td>1,783</td>
<td>46,316</td>
<td></td>
</tr>
</tbody>
</table>

地域別比率 5.9% 1.6% 45.0% 14.5% 25.5% 3.6% 3.8%

※フォークリフト等には、構内運搬車、トーイングトラクター等も含む。

(2) 急速充填設備（エコ・ステーション、天然ガススタンド）・小型充填機（昇圧供給装置）

表6 地域ごとの充填所数 2017年3月31日現在

<table>
<thead>
<tr>
<th>種類</th>
<th>北海道</th>
<th>東北圏</th>
<th>関東圏</th>
<th>東海・北陸圏</th>
<th>近畿圏</th>
<th>中国・四国圏</th>
<th>九州圏</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>天然ガススタンド（ガス事業者関与）</td>
<td>6</td>
<td>3</td>
<td>54</td>
<td>27</td>
<td>24</td>
<td>18</td>
<td>12</td>
<td>144</td>
</tr>
<tr>
<td>天然ガススタンド（一般資本）</td>
<td>0</td>
<td>1</td>
<td>38</td>
<td>22</td>
<td>26</td>
<td>2</td>
<td>3</td>
<td>92</td>
</tr>
<tr>
<td>自家用充填所</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>6</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>合計</td>
<td>7</td>
<td>5</td>
<td>107</td>
<td>55</td>
<td>61</td>
<td>22</td>
<td>16</td>
<td>273</td>
</tr>
<tr>
<td>昇圧供給装置（小型充填機）</td>
<td>4</td>
<td>1</td>
<td>190</td>
<td>103</td>
<td>80</td>
<td>23</td>
<td>22</td>
<td>423</td>
</tr>
</tbody>
</table>
4.4 関係法令

天然ガス自動車の普及のために以下の通り関係法令が整備されています。

(1) 天然ガス自動車に関する法体系

<table>
<thead>
<tr>
<th>法令等の名称</th>
<th>法令等に含まれる内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>道路運送車両の保安基準（国土交通省令）（以下「保安基準」）</td>
<td>天然ガス自動車の取扱いに関すること</td>
</tr>
<tr>
<td>自動車点検基準（国土交通省令）</td>
<td>自動車の構造に関すること</td>
</tr>
<tr>
<td>道路運送車両の保安基準の細目を定める告示（国土交通省令）</td>
<td>燃料装置 保安基準第15条</td>
</tr>
<tr>
<td>質譲事務規程（独立行政法人自動車技術総合機構）</td>
<td>高圧ガスの燃料装置 保安基準第17条</td>
</tr>
<tr>
<td>圧縮ガスを燃料とする自動車の取扱いについて（通達）</td>
<td>電気装置 保安基準第17条の2</td>
</tr>
<tr>
<td>圧縮ガス（CNG）自動車の取扱いについて（通達）</td>
<td>はい煙、悪臭のあるガス、有害なガス等の飛散防止装置 保安基準第31条</td>
</tr>
<tr>
<td>圧縮ガス自動車の構造基準の一部改正について（通達）</td>
<td>自動車の検査に関すること</td>
</tr>
<tr>
<td>圧縮ガス自動車（CNG自動車）に係わる点検の実施方法について（通達）</td>
<td>自動車の点検に関すること</td>
</tr>
<tr>
<td>UNECE-R110との整合</td>
<td>天然ガス自動車に係わる使用・点検・整備・講習に関すること</td>
</tr>
<tr>
<td>高圧ガス保安法（以下「保安法」）</td>
<td>UNECE-R110との整合</td>
</tr>
<tr>
<td>容器保安規則</td>
<td>(\text{ガス容器及び容器附属品に関すること}) 保安法第44、45、46、49、56条</td>
</tr>
<tr>
<td>容器保安規則に基づき表示等の細目、容器再検査の方法等を定める告示</td>
<td>(\text{ガス容器の製造・表示に関すること}) 保安法第45、46、49条</td>
</tr>
<tr>
<td>国際相互承認に係る容器保安規則</td>
<td>(\text{CNG自動車用容器等の再検査期間等に関すること}) 保安法第48条</td>
</tr>
<tr>
<td>一般高圧ガス保安規則</td>
<td>(\text{ガス容器及び容器附属品の再検査に関すること}) 保安法第49、50、51、52、60条</td>
</tr>
<tr>
<td>ガス容器及び容器附属品に関する こと</td>
<td>(\text{CNG自動車用容器等の使用制限に関すること}) 保安法第49条</td>
</tr>
<tr>
<td>(\text{ガス容器及 び容器附属品の再検査に関する こと})</td>
<td>(\text{ガス容器等に刻印される製造年月日又は検査合格年月日に関すること}) 保安法第48条</td>
</tr>
<tr>
<td>高圧ガス保安法</td>
<td>(\text{ガス容器及び容器附属品の再検査に関する こと}) 保安法第49、50、51、52、60条</td>
</tr>
<tr>
<td>容器保安規則</td>
<td>(\text{CNG自動車用容器等の使用制限に関すること}) 保安法第49条</td>
</tr>
<tr>
<td>容器保安規則に基づき表示等の細目、容器再検査の方法等を定める告示</td>
<td>(\text{ガス容器等に刻印される製造年月日又は検査合格年月日に関すること}) 保安法第48条</td>
</tr>
<tr>
<td>(\text{ガス容器及び容器附属品に関する こと})</td>
<td>(\text{ガス容器及び容器附属品の再検査に関する こと}) 保安法第49、50、51、52、60条</td>
</tr>
<tr>
<td>(\text{ガス容器及び容器附属品の再検査に関する こと})</td>
<td>(\text{ガス容器等に刻印される製造年月日又は検査合格年月日に関すること}) 保安法第48条</td>
</tr>
</tbody>
</table>

(2) 天然ガススタンドに関する法体系

<table>
<thead>
<tr>
<th>法令等の名称</th>
<th>法令等に含まれる内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>高圧ガス保安法</td>
<td>(\text{圧縮天然ガススタンドにおける施設の位置、構造及び設備ならびに製造の方法に関すること})</td>
</tr>
<tr>
<td>一般高圧ガス保安規則（以下「一般則」）</td>
<td>(\text{高圧ガス設備、ディスペンサー、スタンド周辺等の離隔距離一般則7条})</td>
</tr>
<tr>
<td>保安検査の方法を定める告示等</td>
<td>(\text{保安監督者の資格要件 一般則第64条})</td>
</tr>
<tr>
<td>国際相互承認に係る容器保安規則</td>
<td>(\text{保安検査、定期自主検査 一般則第79、83条})</td>
</tr>
<tr>
<td>一般高圧ガス保安規則</td>
<td>(\text{建築基準法施行令})</td>
</tr>
<tr>
<td>(\text{ガス容器及び容器附属品に関する こと})</td>
<td>(\text{建築物の敷地・構造・設備の基準に及び制限に関する事項並びに耐震設計に関すること})</td>
</tr>
<tr>
<td>(\text{ガス容器及び容器附属品の再検査に関する こと})</td>
<td>(\text{建築物の敷地・構造・設備の基準に及び制限に関する事項並びに耐震設計に関すること})</td>
</tr>
</tbody>
</table>

(3) 小型充填機に関する法体系

<table>
<thead>
<tr>
<th>法令等の名称</th>
<th>法令等に含まれる内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>ガス事業法</td>
<td>(\text{ガス導管材料、接合方法、構造、試験方法、保安規程、供給規程及びガス供給施設の設計・工事・維持管理に関すること})</td>
</tr>
<tr>
<td>ガス事業法施行令・施行規則</td>
<td>(\text{昇压限界 技省令60条})</td>
</tr>
<tr>
<td>ガス工物資の技術上の基準を定める省令（以下「技省令」）</td>
<td>(\text{安全措置等 技省令61条})</td>
</tr>
<tr>
<td>(\text{ガス容器及び容器附属品の再検査に関する こと})</td>
<td>(\text{設置場所等 技省令62条})</td>
</tr>
<tr>
<td>(\text{ガス容器及び容器附属品の再検査に関する こと})</td>
<td>(\text{点検 技省令63条})</td>
</tr>
</tbody>
</table>
4.5 政府による支援措置

天然ガス自動車などの低公害車の普及を促進するために、政府による助成や優遇税制等の支援措置が実施されています。

(1) 2017年度天然ガス自動車関係補助（政府等事業予算）

<table>
<thead>
<tr>
<th>事業名</th>
<th>事業概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>地域交通のグリーン化に向けた次世代環境車の普及促進（国土交通省補助事業）</td>
<td>＊対象車両：事業用の天然ガス自動車（貨物、最大積載量5tかつ車両総重量8t以上の改造車両を除く）、天然ガスバス（乗車定員11人以上）</td>
</tr>
<tr>
<td></td>
<td>＊補助額：天然ガス自動車とガソリン車・ディーゼル車との差額の1/3以内（上限あり）</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>車両</th>
<th>補助対象者</th>
<th>補助率</th>
<th>補助要件</th>
</tr>
</thead>
<tbody>
<tr>
<td>トラック</td>
<td>新車購入</td>
<td>1/3</td>
<td>使用過程車改造</td>
</tr>
<tr>
<td></td>
<td>使用過程車改造</td>
<td>1/3</td>
<td></td>
</tr>
<tr>
<td>バス</td>
<td>新車購入</td>
<td>1/3</td>
<td>使用過程車改造</td>
</tr>
<tr>
<td></td>
<td>使用過程車改造</td>
<td>1/3</td>
<td></td>
</tr>
</tbody>
</table>

（注）グリーン経営認証制度等を取得している者は、1台からの導入を認める。

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.税制</td>
<td></td>
</tr>
<tr>
<td>（1）固定資産税</td>
<td>低公害車燃料供給設備（1基の取得価額が4,000万円以上）の固定資産税の課税標準額を最初の3年間2/3とする。</td>
</tr>
</tbody>
</table>
| （2）自動車取得税 | 車両取得時の税を減免。天然ガス自動車は、平成21年排ガス規制NOx10%以上低減した車両が対象。
新車：非課税、中古車：45万円控除 |
| （3）自動車重量税 | 新車購入時および初回の継続車検時の税を免除（2回）。天然ガス自動車は、平成21年排ガス規制NOx10%以上低減した車両が対象。
新車新規検査および初回の鈍化検査：免税 |
| （4）自動車税・軽自動車税 | 自動車税を軽減。天然ガス自動車は、平成21年排ガス規制NOx10%以上低減した車両が対象。
新車登録時の翌年度1年間の自動車税が概ね75%軽減 |
| 2.財政投融資 | |
| （1）日本政策金融公庫環境・エネルギー対策資金 | 中小企業向けの低公害車取得等、車両と天然ガス充填設備などに対する融資。貸付限度額は720万円で、特別利率が適用される。 |
5. 参考資料

5.1.1 天然ガスとは

天然ガスは、メタンを主成分とする天然の可燃性ガスで、世界各地に賦存しており、図11のように地殻にガス単独で存在するガス田ガス、原油と共存している油田ガス等があります。地層の大規模な褶曲（背斜）構造に貯まったこれらのガス（「在来型ガス」）がこれまで主に採掘されてきました。

しかし、図12に示される、これまで商業生産が難しいと考えられてきたシェールガス（注1）や、図11に示されるCBM（注2）などの「非在来型ガス」も、技術の進歩により採掘され始めています。

一方、日本の周辺海域では大量のメタンハイドレート（注3）の存在が確認されています。産出技術の研究が進められており、2013年日本は世界で初めてガスの試験採取に成功しています。（図13、14）

天然ガスは日本国内でも産出されますが、国内供給量の約96%は海外から、液化天然ガス（LNG：Liquefied Natural Gas）の状態で輸入されています。また、2017年度後半には、大手ガス会社により米国のシェールガスの輸入が開始されます。なお、LPガス（Liquefied Petroleum Gas：液化石油ガス）は石油に随伴して産出されるプロパンやブタンを主成分とするガスで、天然ガスとは異なります。

都市ガスとして供給される天然ガスは、熱量や燃焼性の調整を行い、また漏れたときに速やかに知覚できるように付臭されています（表7）。

【注1】シェールガス：薄片状に剥がれやすい頁岩（シェール）の微細な割れ目に封じ込められた天然ガス。
【注2】CBM：炭層メタン、コールベッドメタン（Coalbed methane）のこと。石炭の生成・熟成に伴って発生したメタンを主成分とするガスで、炭層中の石炭に保持されているもの。
【注3】メタンハイドレート：メタンを中心にして周囲を水分子が囲んだ形になっている固体結晶で、燃える氷とも呼ばれる。

※10 BSR（Bottom Simulating Reflector 海底擬似反射面）：メタンハイドレートが分布する海床には、地震探査記録にBSRと呼ばれる特殊な反射記録が現れ、メタンハイドレートの存在を推測することができる。
5.1.2 天然ガスの一般的特徴

(1) クリーンなエネルギー
天然ガスは、メタンを主成分としたガスで、硫黄分、その他の不純物を含まないため、燃やしてもSOxやスズをほとんど発生せず、また地球温暖化の原因物質の一つであるCO₂の排出量も石油より約25%少ない事が特徴です。さらに、光化学スモッグや酸性雨の原因となるNOxの排出量が少ない環境性に優れたエネルギーです。

(2) 高い安全性
天然ガスは、空気より軽く、液体燃料のように地上に滞留せず、上方に拡散します。燃焼下限界(燃焼することができる空気中の濃度の下限)が、他燃料に比較して高い(約4.5%)こと、自然発火温度も高いことから他燃料と比較して安全性が高いエネルギーです。また、天然ガスにはCO等の毒性物質が含まれていませんので、ガス中毒の心配はありません。

表8 各種燃料の物性比較 ※12
<table>
<thead>
<tr>
<th></th>
<th>メタン</th>
<th>プロパン</th>
<th>ブタン</th>
<th>ガソリン</th>
<th>軽油</th>
<th>水素</th>
</tr>
</thead>
<tbody>
<tr>
<td>対空気比重(空気=1)</td>
<td>0.55</td>
<td>1.52</td>
<td>2.01</td>
<td>3.4</td>
<td>4.0</td>
<td>0.07</td>
</tr>
<tr>
<td>自然発火温度(℃)</td>
<td>537</td>
<td>432</td>
<td>365</td>
<td>300</td>
<td>260</td>
<td>500</td>
</tr>
<tr>
<td>可燃範囲(空気中、体積%)</td>
<td>5.0 〜 15.0</td>
<td>2.1 〜 9.5</td>
<td>1.8 〜 8.4</td>
<td>1.0 〜 7.6</td>
<td>0.5 〜 4.1</td>
<td>4.0 〜 75.0</td>
</tr>
<tr>
<td>単位体積あたりの発熱量(MJ/ℓ)</td>
<td>39.8</td>
<td>25.6</td>
<td>28.9</td>
<td>34.6</td>
<td>37.7</td>
<td>12.8</td>
</tr>
<tr>
<td>オクタン価</td>
<td>約130</td>
<td>125</td>
<td>約95</td>
<td>90 〜 98</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

※メタン、プロパン、ブタンは気体で貯蔵した場合(MJ/㎥)、他は液体で貯蔵した場合(MJ/ℓ)。

5.1.3 供給の安定性
天然ガスは、世界各地に広く豊富に埋蔵されています。埋蔵量は2016年末現在で約187兆㎥(非在来型を除く)が確認され、年間生産量で割りたった可採年数は53年になります。さらに新しいガス田が次々に発見され、シェールガスなどの非在来型ガスを含めると回収可能な埋蔵量は約230年分といわれています。
5.1.4 液化天然ガス（LNG）の供給体制

日本国内では、天然ガスは新潟県、千葉県、北海道等で産出されますが、その生産量は年間33億㎥程度と極めて少ないものです。1969年のアルスカLNG導入後、オーストラリア、マレーシア、カタール、ロシア、インドネシア、アラブ首長国連邦などからLNGが供給されています。

図18 LNG輸入実績（2016年1月〜12月）※15

※14 BP Statistical Review of World Energy June 2017
※15 財務省日本貿易統計
5.1.5 日本のLNG基地と主要導管網（2017年8月現在）

大都市圏の大半ではすでに天然ガス系都市ガスが供給されており、天然ガス以外のエリアも順次天然ガス化が進められています。

図19 日本のLNG基地と主要導管網 ※16

※16 出典：日本のLNG基地は「The LNG Industry, GIIGNL Annual Report 2017」を基に各種資料より作成、主要導管網は「総合資源エネルギー調査会基本政策分科会第1回システム改革小委員会資料」を基に各種資料より作成
5.2.1 天然ガス自動車の種類

天然ガス自動車は、燃料の貯蔵方式で分類すると次のようになります。

圧縮天然ガス自動車（CNG自動車）

液化天然ガス自動車（LNG自動車）

吸着天然ガス自動車（ANG自動車）

圧縮天然ガス自動車（CNG自動車）

液化天然ガス自動車（LNG自動車）

吸着天然ガス自動車（ANG自動車）

(1) 圧縮天然ガス自動車（CNG自動車）

天然ガスを気体のまま、高圧（20MPa）でガス容器に貯蔵する車両で、現在使用されている天然ガス自動車のほとんどがこのタイプです。また最近、様々な種類の車両が市場に投入され、以下のような車種があります。

① 天然ガス専焼車

圧縮天然ガスだけを燃料にする車両で、軽自動車や小型貨物車等のガソリンエンジンをベースにする車両やトラックやバス等の大型車向けのディーゼルエンジンをベースにする車があります。
②バイフューエル車
圧縮天然ガスとガソリンのどちらの燃料で走行可能な車両です。日本ではメーカー製造車はなく、後改造によるものが主流ですが、ヨーロッパの小型乗用車では一般的に普及しています。ガソリンでも走行できるので、インフラ整備が進んでいない地域でも安心して使用できます。

ダイハツハイゼットカーゴ（HKS）
トヨタプロボックス・サクシード（HKS）

③デュアルフューエル車
吸入空気に天然ガスを混合させ、着火源として軽油を使用する車両です。ディーゼルエンジンとほぼ同等の熱効率で、天然ガスがなくても、軽油だけで走行が可能です。海外では、VOLVO TRUCKがこの技術を利用したディーゼル・デュアルフューエル車を2011年より欧州四ヵ国で販売開始。日本においても排ガス性能の向上に向けた技術開発が必要です。

④ハイブリッド車
天然ガスエンジンに電気モーターを組み合わせた車両です。

カムリハイブリッド CNGバイフューエル（エフ・ケイメカニック）
トヨタSAIハイブリッド CNGバイフューエル（HKS）

(2) 液化天然ガス自動車（LNG自動車）
天然ガスを液体状態（−162℃）で、超低温容器に貯蔵する車両です。日本では、国土交通省の次世代低公害車開発促進事業において、大型LNGトラックによる公道走行試験を2009年度に実施しました。1,200kmの無充填走行を釈成し、日本ガス協会は『LNG自動車構造基準』を策定しました。長距離移動を必要とする北米、欧州、豪州、中国等で開発が盛んで実用化もされています。日本ではBOG処理の課題もあり、まだ実用化されていませんが、今後技術開発が進むと長距離移動が必要な車両での普及が期待されます。

(3) 吸着天然ガス自動車（ANG自動車）
天然ガスを、ガス容器内の吸着材に吸着させ、圧力数MPaで貯蔵する車両で、試験研究の段階にあります。

※17 BOG（Boil Off Gas）：LNG貯槽への入熱によりLNGの一部が蒸発して発生したガスのこと。
5.2.2 天然ガス自動車の構造

天然ガス自動車の構造は、燃料供給系を除いてガソリン車とはほぼ同じです。

燃料の天然ガスは、ガス充填口を通じて、自動車に搭載されたガス容器に最高圧力20MPaで充填されます。また運転時には、ガス容器から燃料配管を通り、レギュレータ（減圧弁）で減圧されてインジェクタでエンジンに供給されます。

図20 小型バン（例）
図21 トラック（例）
図22 バイフューエル車（例）
表9 主な天然ガス自動車の諸元一覧

車種	通称名	型式	全長	全幅	全高	車両総重量	乗車定員	エンジン	フォークリフト	ガス容器リール	一充填運行距離(※18)			
トラック (※19)	いすゞエルフ	TFG-NJR82ZAN	5,150	1,890	2,810	2,805	1,950	4,920	3	4HV1	4,570	93×2	37.2	150~220
	いすゞエルフ	TFG-NKR82ZAN	5,150	1,890	3,040	2,915	2,000	5,080	3	4HV1	4,570	93×2	37.2	150~220
	いすゞエルフ	TFG-NPR82ZAN	6,475	2,195	3,170	3,495	3,000	6,660	3	4HV1	4,570	93×2	37.2	150~220
	いすゞフォワード	SKG-FRR90S2改	7,835	2,310	3,390	4,470	7,880	2	6HF1-TCN	7,790	93×2	37.2	150~220	
	いすゞフォワード	LKG-FTR90S2改	7,290	2,280	2,745	6,770	5,060	12,535	3	6HF1-TCN	7,790	93×2	37.2	150~220
	忍野三洋フォーライト	FG15CNG	3,180	1,065	2,065	2,510	1,900	2,065	1	K21	2,448	40	12	7.5
	忍野三洋フォーライト	FG25ZCNG	3,630	1,150	2,074	3,020	2,065	2,448	1	K25	2,448	40	12	7.5
	関東機械センター	V3-CNG-STD-1	3,280	1,100	1,800	740	1,050	1,300	1	G390	389	12	7.5	
	関東機械センター	V3-CNG-R1952	3,280	1,100	1,800	775	1,050	1,325	1	G390	389	12	7.5	

5.2.3 天然ガス自動車の安全性

天然ガス自動車の構造は、基本的にガソリン車やディーゼル車と同じであり、異なるのは燃料供給系だけです。その安全性については、使用部品や装置の機能により、衝突時や火災時にも、以下のように十分確保されています。

(1) 衝突の場合
① 過流防止弁、主止弁、燃料遮断弁など各種の安全装置により、燃料（天然ガス）の漏洩を防止します。
② ガス容器、配管・継手、機器類はすべて衝突に耐える強度を持ち、また、損傷しにくいように配置されています。

(2) 火災の場合
ガス容器が破損しないように、ガスを安全に排出する安全弁が作動し、ガス容器内の圧力上昇を防ぎ、破損を防止します。

他にも、ガス充填終了後にガス充填ホースを接続した状態で発進した場合、車両及び充填設備の損傷を防ぐために、車両側のガス充填口の扉を開くとスタータ回路が切れ、エンジンが始動しないようにした誤発進防止装置（スタータインターロックシステム）を装備した車両もあります。

5.2.4 天然ガス自動車の整備

(1) 燃料供給系の点検
天然ガス自動車の点検は、基本的にガソリン車やディーゼル車と同じですが、燃料供給系に異なります。点検項目の概要を以下に示します。具体的な点検方法は「自動車点検基準（国土交通省令）」等により規定され、定期点検時に確実に実施する必要があります。
① 導管、継手部のガス漏れと損傷：レギュレータ（減圧弁）、燃料配管、燃料充填口を目視や石けん水を使用して、ガス漏れや損傷がないか確認する。

※18 一充填走行距離は、総発熱量45MJ/m³の天然ガス使用時の市街地での推定走行距離
※19 トラック、廃棄物、バス、フォークリフトの諸元は、代表的架装例
②ガス容器取付部の緩みと損傷：スパナ等で緩みの有無、目視により損傷の有無を確認、点検する。

この車両検査方法のほか、整備事業者の基準や検査設備、天然ガス自動車整備講習の受講義務などの詳細に関しては、地域毎に「運輸局通達」により運用されている場合が多く、管轄地区の運輸支局、整備振興会等に確認する必要があります。

(2) 容器再検査（※20）

ガス容器は、高圧ガス保安法関連により、ガス容器とその付属品を一定期間ごとに再検査することが義務付けられています。この容器再検査は、都道府県に登録された自動車整備工場等の容器検査所で行えます。再検査の期間や方法の概略は下記のとおりです。

①再検査期間

初回再検査：容器検査の合格の刻印を受けた日から4年以内
2回目以降の再検査：前回の検査日から2年2ヶ月以内
※車検時に合わせて実施することが望ましい

②再検査方法

ガス容器を車載した状態で、目視による損傷等の外観検査およびガス漏洩検査（12MPa以上）

③その他留意点

・ガス容器はその車両専用で、他用途や他車両への転用禁止
・ガス容器の使用期限は容器検査合格日から15年
・廃車時にはガス容器を切断等のくず化処分を行う
・ガス容器の載せ替えは、新品に限る

5.3.1 天然ガススタンド整備状況（2017年3月31日現在）

※20 出典：圧縮天然ガス自動車燃料装置用容器及び附属品再検査の手引き（平成29年1月、一般社団法人 日本ガス協会 天然ガス自動車室）
5.3.2 天然ガススタンド（急速充填設備）

天然ガススタンドは、ガソリンスタンドと同様に、小型車であれば数分で天然ガスを充填可能で、一般車両へガスを充填・販売します。エコ・ステーションや天然ガススタンドという名称で呼ばれており、都市部を中心に全国で273箇所（2017年3月末現在）整備されています。また、バスやトラック等を多く保有する事業所の自家用設備として導入している場合もあります。

主な構成機器は、圧縮機、蓄ガス器、ディスペンサーの各ユニットであり、その特徴は以下のとおりです。

- 圧縮機ユニット 中圧ガス導管から受け入れた0.1〜0.6MPaの天然ガスを、通常25MPa程度まで昇圧する設備です。標準仕様は250Nm³/hですが、充填車両に合わせて複数台設置したり、2倍程度の能力の機器を設置する場合もあります。
- 蓄ガス器ユニット 圧縮された天然ガスを貯蔵する貯蔵設備です。蓄ガス器は、1本あたり250リットルや450リットルの鋼製容器です。
- ディスペンサーユニット 車両へ充填ノズルを接続して、ガス流量を制御し、充填を行う設備です。また、充填したガス量を計測して表示する機能があります。

図24 天然ガススタンド（急速充填設備）の設備構成

5.3.3 パッケージ型充填設備

パッケージ型充填設備は、急速充填設備の各ユニットの機能を簡素化して一体化した設備です。小型トラック等を保有する事業所、フォークリフトや構内運搬車を保有する工場や市場等の自家用設備として導入されています。従来の天然ガススタンドと比較して、以下の特徴があります。

①圧縮機やディスペンサー等の主要部品を一体化しており、据付や現地での配管・配線工事等が大幅に簡略化できます。
②現地工事の簡略化による工期短縮やコストダウンが可能です。
③スペースが小さくても設置可能です。

図25 パッケージ型急速充填設備（250㎥/h型）
5.3.4 小型充填機（昇圧供給装置）

事業所等に設置され、1台又は2台の車両に数時間かけて充填を行う装置です。家庭等へ供給されている低圧ガスで充填が可能なため、設置や取り扱いが容易です。

利用できる天然ガススタンドが近くに無い場合や、少数の天然ガス自動車を運用する事業者に適しています。日本では400台程度の実績ですが、海外では、アメリカやカナダを中心に1万台以上普及しています。

図26 小型充填機（10㎥/h型）

5.3.5 その他の充填設備

L-CNG充填設備

液化天然ガス（LNG）をLNGローリーからLNG貯槽に受け入れ、LNGポンプで昇圧後、気化、付臭を行い、圧縮天然ガス（CNG）をつくる設備です。ローリー輸送のため、ガス導管のない地域でも天然ガススタンドの設置が可能になります。圧縮機の代わりにLNG昇圧ポンプを使用するため、設備の運用にかかる電気代を1/10程度に抑えることができます。日本では既に7箇所設置されています。

図27 小型充填機の設置概略図

図28 L-CNG充填設備フローチャート

図29 京浜トランクタークーティナル（東京都大田区）L-CNGステーション

5.4.1 天然ガス自動車排出ガス技術指針の動向

平成21年ポート新長期規制が施行されるに伴い、圧縮天然ガス自動車の排出ガス技術指針（2008）が平成20年3月28日付で新たに提示されました。従前の指針（2003）からの主な変更点は、3.5t超の車両のNOxが1.0g/kWhから0.5g/kWhになったこと、中・軽量車の測定モードが10-15+11モードからJC08モードに変更になりました。
5.4.2 ポスト新長期規制対応圧縮天然ガス自動車排ガス技術指針（2008）

表10 圧縮天然ガス自動車排ガス技術指針（2008）

<table>
<thead>
<tr>
<th>自動車の種別</th>
<th>測定モード [単位]</th>
<th>平均排ガス値 [g/㎞]</th>
<th>CO</th>
<th>NMHC</th>
<th>NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>乗用車※21（定員10人以下）</td>
<td>JC08 [g/㎞]</td>
<td></td>
<td>1.15</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>東アジア</td>
<td></td>
<td></td>
<td>4.02</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>軽乗用車（車両総重量1.7t以下）</td>
<td></td>
<td></td>
<td>1.15</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>重乗用車（車両総重量1.7t超〜3.5t以下）</td>
<td></td>
<td></td>
<td>2.55</td>
<td>0.025</td>
<td>0.035</td>
</tr>
<tr>
<td>重乗用車（車両総重量3.5t超）</td>
<td>JE05 [g/kWh]</td>
<td></td>
<td>16.0</td>
<td>0.17</td>
<td>0.5</td>
</tr>
</tbody>
</table>

5.4.3 最新排出ガス規制（2017年9月時点）

表11 軽油を燃料とする車両

<table>
<thead>
<tr>
<th>自動車の種別</th>
<th>測定モード [単位]</th>
<th>排出ガス規制値（排出ガス平均値） [g/㎞]</th>
<th>CO</th>
<th>NMHC</th>
<th>NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>乗用車※22（定員10人以下）</td>
<td>JC08 [g/㎞]</td>
<td></td>
<td>0.84 (0.63)</td>
<td>0.032 (0.024)</td>
<td>0.11 (0.08)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.20 (0.15)</td>
<td>0.009 (0.007)</td>
<td></td>
</tr>
<tr>
<td>重量車（車両総重量1.7t超〜3.5t以下）</td>
<td>WHTC+WHSC [g/kWh]</td>
<td></td>
<td>2.95 (2.22)</td>
<td>0.23 (0.17)</td>
<td>0.7 (0.4)</td>
</tr>
</tbody>
</table>

*は、2016年値

表12 ガソリン・LPGを燃料とする車両

<table>
<thead>
<tr>
<th>自動車の種別</th>
<th>測定モード [単位]</th>
<th>排出ガス規制値（排出ガス平均値） [g/㎞]</th>
<th>CO</th>
<th>NMHC</th>
<th>NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>乗用車※21（定員10人以下）</td>
<td>JC08 [g/㎞]</td>
<td></td>
<td>1.92 (1.15)</td>
<td>0.31 (0.23)</td>
<td>0.9 (0.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.08 (0.05)</td>
<td>0.007 (0.005)</td>
<td></td>
</tr>
<tr>
<td>重量車（車両総重量3.5t超）</td>
<td>JE05 [g/kWh]</td>
<td></td>
<td>21.3 (16.0)</td>
<td>0.9 (0.7)</td>
<td>0.013 (0.010)</td>
</tr>
</tbody>
</table>

表13 その他燃料車（ガソリン・LPG又は軽油以外を燃料とする車両）

<table>
<thead>
<tr>
<th>自動車の種別</th>
<th>測定モード [単位]</th>
<th>排出ガス規制値（排出ガス平均値） [g/㎞]</th>
<th>CO</th>
<th>NMHC</th>
<th>NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>乗用車※21（定員10人以下）</td>
<td>JC08 [g/㎞]</td>
<td></td>
<td>1.92 (1.15)</td>
<td>0.31 (0.23)</td>
<td>0.9 (0.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.08 (0.05)</td>
<td>0.007 (0.005)</td>
<td></td>
</tr>
<tr>
<td>重量車（車両総重量3.5t超）</td>
<td>JE05 [g/kWh]</td>
<td></td>
<td>21.3 (16.0)</td>
<td>0.9 (0.7)</td>
<td>0.013 (0.010)</td>
</tr>
</tbody>
</table>

※21 乗用車：専ら乗用の用に供する乗車定員10人以下の普通自動車、小型自動車又は軽自動車。
※22 乗用車：専ら乗用の用に供する乗車定員10人以下の普通自動車、小型自動車。
※23 吸収型窒素酸化物還元触媒を装着した直接噴射式のエンジンを有するものが対象。
5.4.4 天然ガス自動車シンボルマーク

天然ガス自動車及び燃料供給設備を広く一般に認知していただくためのツールとして、全国統一「天然ガス自動車シンボルマーク」を制定し、広く活用しています。なお、このシンボルマークは、日本の環境保全活動に貢献するために、国際的なデザイナーズブランドであるケンゾー社より寄贈いただきました。

天然ガスエネルギーならではの「環境保全への貢献」や「自然との調和」をシンボル化しました。ブルーは澄みきった青い空を、丸い形は日の丸を象徴し、地平線、どこまでも続く新緑の広がりは絵筆の一描きでその命を与えられました。ロゴの丸みを帯びた字体は、その上にある丸い形の空に応えるかのようで、とてもシンプルでどのような大きさでもとても読みやすくあるようにデザインされています。

5.4.5 天然ガス自動車マスコットキャラクター“ナチュラシくん”

天然ガス自動車を広く知っていただくための、かわいいマスコットキャラクター“ナチュラシくん”が誕生しました。キャラクターのコンセプトは、流氷が溶けて住むところが無くなってしまった様に、みんなに地球温暖化防止をお願いしに来たあざらしの男の子です。環境にやさしい天然ガス自動車を応援しています。

天然ガス自動車のマスコットキャラクターとして、現在広く活用されています。
天然ガス自動車